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psd-package Adaptive power spectral density estimation using optimal sine multi-
tapers

Description

Estimate the power spectral density (PSD) of a timeseries using the sine multitapers, adaptively; the
number of tapers (and hence the resolution and uncertainty) vary according to spectral shape. The
main function to be used is pspectrum.

Details

In frequency ranges where the spectrum (S) is relatively flat, more tapers are taken and so a higher
accuracy is attained at the expense of lower frequency resolution. The program makes a pilot
estimate of the spectrum, then uses Riedel and Sidorenko’s (1995) estimate of the MSE (minimum
square error), which is based on an estimate of the second derivative of the PSD (S′′). The process
is repeated niter times; further iteration may be necessary to reach convergence, or an acceptably
low spectral variance. In this context the term "acceptable" is rather subjective: one can usually
detect an unconverged state by a rather jagged appearance of the spectrum, but this is uncommon in
our experience.

Adaptive estimation: The adaptive process used is as follows. A quadratic fit to the logarithm
of the PSD within an adaptively determined frequency band is used to find an estimate of the
local second derivative of the spectrum. This is used in an equation like R-S equation (13) for the
MSE taper number, with the difference that a parabolic weighting is applied with increasing taper
order. Because the FFTs of the tapered series can be found by resampling the FFT of the original
time series (doubled in length and padded with zeros) only one FFT is required per series, no
matter how many tapers are used. The spectra associated with the sine tapers are weighted before
averaging with a parabolically varying weight. The expression for the optimal number of tapers
given by R-S must be modified since it gives an unbounded result near points where S′′ vanishes,
which happens at many points in most spectra. This program restricts the rate of growth of the
number of tapers so that a neighboring covering interval estimate is never completely contained
in the next such interval.

Resolution and uncertainty: The sine multitaper adaptive process introduces a variable resolu-
tion and error in the frequency domain. See documentation for spectral_properties details on
how these are computed.

Author(s)

Andrew J. Barbour <andy.barbour@gmail.com>, Jonathan Kennel, and Robert L. Parker

References

Barbour, A. J. and R. L. Parker, (2014), psd: Adaptive, sine multitaper power spectral density
estimation for R, Computers and Geosciences, 63, 1–8, doi: 10.1016/j.cageo.2013.09.015

Percival, D. B., and A.T. Walden (1993), Spectral analysis for physical applications, Cambridge
University Press
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Prieto, G. A., R. L. Parker, D. J. Thomson, F. L. Vernon, and R. L. Graham (2007), Reducing the
bias of multitaper spectrum estimates, Geophysical Journal International, 171, 1269–1281, doi:
10.1111/j.1365-246X.2007.03592.x

Riedel, K. S., & Sidorenko, A. (1995), Minimum bias multiple taper spectral estimation, Signal
Processing, IEEE Transactions on, 43(1), 188–195.

See Also

pspectrum (main function); psdcore and riedsid

as.tapers Coerce an object into a ’tapers’ object.

Description

In a tapered spectrum estimation algorithm, it is necessary to enforce rules on the number of tapers
that may be applied.

Usage

as.tapers(
x,
min_taper = 1,
max_taper = NULL,
setspan = FALSE,
record.last = FALSE

)

tapers(
x,
min_taper = 1,
max_taper = NULL,
setspan = FALSE,
record.last = FALSE

)

Arguments

x An object to set

min_taper Set all values less than this to this.

max_taper Set all values greater than this to this.

setspan logical; should the tapers object be passed through minspan before being re-
turned?

record.last logical; should the x be saved to the psd-environment before coercion?
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Details

Formal requirements enforced by this function are:

• Non-zero.

• Integer values.

• Fewer than the half-length of the spectrum.

For example, we cannot apply zero tapers (the result would be a raw periodogram) or one million ta-
pers (that would be absurd, and violate orthogonality conditions for any series less than two million
terms long!).

An object with S3 class 'tapers' is created; this will have a minimum number of tapers in each
position set by min_taper, and a maximum number of tapers in each position set by max_taper. If
minspan=TRUE, the bounded taper is fed through minspan which will restrict the maximum tapers
to less than or equal to the half-length of the spectrum.

Various classes can be coerced into a 'tapers' object; those tested sofar include: scalar, vector,
matrix, data.frame, and list.

Multiple objects are concatenated into a single vector dimension.

Enabling setspan will only override max_taper should it be larger than the half-width of the series.

Value

An object with class 'taper'

Note

No support (yet) for use of min_taper,max_taper as vectors, although this could be quite desir-
able.

Author(s)

A.J. Barbour

See Also

is.tapers

Examples

## Not run: #REX
library(psd)

##
## Objects with class 'tapers'
##
is.tapers(as.tapers(1))
is.tapers(as.tapers(1:10))

# note dimensions
as.tapers(matrix(1:10,ncol=1))
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as.tapers(list(x=1:10,y=1:30))
as.tapers( x <- data.frame(x=1:10,y=10:19) )

# change constraints
as.tapers(x, min_taper=3, max_taper=10)

# class 'character' is in-coercible; raise error
try(as.tapers(c("a","b")), silent=TRUE)

## End(Not run)#REX

coherence coherence

Description

Calculate coherence from the spectra and cross-spectra. This method is the same as used in spec.pgram.

Usage

coherence(pgram)

Arguments

pgram numeric array must be multivariate

Value

list of coherence. For multivariate time series, a matrix containing the squared coherency between
different series. Column i + (j - 1) * (j - 2)/2 contains the squared coherency between columns i and
j of x, where i < j.

ctap_loess Taper constraints using loess smoothing

Description

Taper constraints using loess smoothing



det_vector 7

Usage

ctap_loess(tapvec, ...)

## S3 method for class 'tapers'
ctap_loess(tapvec, ...)

## Default S3 method:
ctap_loess(
tapvec,
tapseq = NULL,
loess.span = 0.3,
loess.degree = 1,
verbose = TRUE,
...

)

Arguments

tapvec integer or 'tapers' object; the number of tapers at each frequency
... optional arguments
tapseq numeric; positions or frequencies – necessary for smoother methods
loess.span scalar; the span used in loess

loess.degree scalar; the polynomial degree
verbose logical; should warnings and messages be given?

See Also

constrain_tapers, ctap_simple

det_vector det_vector

Description

Determinant for an array

Usage

det_vector(x)

Arguments

x numeric array values to evaluate

Value

vector of determinants
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hfsnm Noise levels found in PBO strainmeter data at seismic frequencies.

Description

These values represent noise levels in high frequency data (10−3 − 10 Hz) from 2009, averaged
over all stations in the Anza cluster of the Plate Boundary Observatory (PBO) borehole strainmeter
network, and the UCSD-style longbase laser strainmeters.

Format

A dataframe with 141 observations on the following 4 variables:

freq Frequencies, in Hertz.

P50 The 50th percentile (median) noise levels in decibels relative to 1ϵ2/ Hz.

P10 The 10th percentile noise levels also in decibels.

meter.type The strainmeter design type.

and 2 attributes:

source.doi The DOI number of the source publication.

generator The structure of a function which will refresh the values from the supplemental files of
the original publication.

Details

NA values in the series highlight frequency bands where the noise levels are unreliable, due to a
instrumental artifact.

Source

Barbour, A. J., and Agnew, D. C. (2011), Noise Levels on Plate Boundary Observatory Borehole
Strainmeters in Southern California, Bulletin of the Seismological Society of America, 101(5), 2453-
2466, doi:10.1785/0120110062

See Also

pspectrum, Tohoku, magnet

Examples

data(hfsnm)
str(hfsnm)
FUN <- attr(hfsnm, "generator")
try(dat <- FUN(molten=FALSE)) # may fail without library-access to BSSA
try(all.equal(dat[,1:4], hfsnm[,1:4]))



magnet 9

magnet A single line of Project MAGNET horizontal field intensity

Description

The Project MAGNET mission provided a wealth of airborne-magnetometer data spanning the
globe (Coleman, 1992). This dataset represents a single track of horizontal field intensities (a very
small subset of the full collection!).

Format

A dataframe with 2048 observations on the following 4 variables.

km Relative along-track distance, in kilometers. The first observation is at zero kilometers.

raw Raw intensities, in nanotesla.

clean Edited raw intensities, in nanotesla

mdiff The difference between clean and raw intensities, in nanotesla.

Details

Raw and Clean Sets: There are non-real data points in raw MAGNET series; these are instru-
mental artefacts, and can severely affect power spectral density (PSD) estimates. A clean series
has been included so that a comparison of PSDs may be made.
Some command like subset(magnet, abs(mdiff) > 0) can be used to identify the rows where
edits have been made.

Source

Project MAGNET page: https://www.ngdc.noaa.gov/geomag/proj_mag.shtml

References

Coleman, R. J. (1992), Project Magnet high-level vector survey data reduction. In Types and Char-
acteristics of Data for Geomagnetic Field Modeling, 3153, pp. 215-248.

See Also

pspectrum, Tohoku, hfsnm

Examples

data(magnet)
summary(magnet)

https://www.ngdc.noaa.gov/geomag/proj_mag.shtml
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modulo_floor Nearest value below

Description

Returns the nearest m-length value (downwards from n).

Usage

modulo_floor(n, m = 2L)

Arguments

n integer; the number of terms (can be a vector)

m integer; the modulo term (cannot be zero)

Details

This function is different from nextn in that the value is floored. For example: 10 is the result for
n=11,m=2 whereas nextn would give 12.

Author(s)

A.J. Barbour

See Also

psd-utilities; psdcore uses this to truncate series to their nearest even length (i.e., m=2).

Examples

n <- 11
nextn(n) # 12
modulo_floor(n) # 10

# works on vectors too:
# defaults to m=2
modulo_floor(seq_len(n))
#[1] 0 2 2 4 4 6 6 8 8 10 10

# change the floor factor
modulo_floor(seq_len(n), 3)
#[1] 0 0 3 3 3 6 6 6 9 9 9

# zeros are not allowed for m
try(modulo_floor(n, 0))
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parabolic_weights_rcpp

parabolic_weights_field

Description

The resampled spectrum involves summing weighted tapers; this produces the weighting factors.
parabolic_weights_rcpp is the fastest implementation, used by resample_fft_rcpp, but it takes
only a single value.

Usage

parabolic_weights_rcpp(ntap = 1L)

parabolic_weights_field(ntap)

parabolic_weights(ntap, ...)

## S3 method for class 'tapers'
parabolic_weights(ntap, tap.index = 1L, ...)

## Default S3 method:
parabolic_weights(ntap = 1L, ...)

Arguments

ntap integer (or tapers object); the number of tapers to provide weightings for.

... optional arguments

tap.index integer; if ntap is a tapers object, the index from which to produce a sequence
of weights for

Details

If one has a tapers object, specify the taper.index to produce a sequence of weights up to the
value at that index; the user is likely to never need to use this function though.

Weighting factors, W , are calculated as follows:

W ≡ 6(n2 −K2)

n(4 ∗ n− 1)(n+ 1)

where n is the total number of tapers, and K is the integer sequence [0, n− 1].

The sum of tapers should equal 1, within machine precision, when n > 0.

Value

A list with the number of tapers, indices of the taper sequence, and the weights WN .
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Author(s)

A.J. Barbour adapted the original algorithm (R.L. Parker), and authored the optimized versions.

See Also

resample_fft_rcpp, psdcore, riedsid2

Examples

## Not run: #REX
library(psd)
library(grDevices)
library(RColorBrewer)

##
## Show parabolic weighting factors as a function of maximum tapers
##

# maximum number of tapers
maxx <- 1e3
# sequence in logspace
xseq <- seq(from=1,to=2.8,by=0.2)

# plot palette
pal <- "Spectral"
npal <- switch(pal, RdYlBu=11, Spectral=11, Blues=9)
pal.col <- RColorBrewer::brewer.pal(npal, pal)
cols <- rev(grDevices::colorRampPalette(pal.col)(maxx))

to_df <- function(W){
# convert parabolic results to data.frame
with(W, data.frame(taper_seq=as.vector(taper_seq), taper_weights=as.vector(taper_weights)))

}

## a roundabout way of bootstrapping y-axis limits:
# upper
WgtsU <- parabolic_weights(5)
DfU <- to_df(WgtsU)
# lower
WgtsL <- parabolic_weights(maxx)
DfL <- to_df(WgtsL)

ylims <- range(pretty(dB(c(DfL$taper_weights, DfU$taper_weights)))) + c(-2,5)

# function for plotting text
TFUN <- function(Df.){

tx <- max(Df.$taper_seq)
ty <- mean(Df.$taper_weights)
text(log10(tx)+0.1, dB(ty), sprintf("%i", tx), col=cols[tx])

}

# function for weighting factors and plotting
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WFUN <- function(x){
message(x)
Wgts <- parabolic_weights(x)
Df <- to_df(Wgts)
lcol <- cols[x]
lines(dB(taper_weights) ~ log10(taper_seq), Df, type="s", lwd=2, col=lcol)
TFUN(Df)

}

## Plot parabolic weighting, in dB, colored by maximum num tapers
plot(dB(taper_weights) ~ log10(taper_seq), DfU, type="s",

xlim=c(0, log10(maxx)+0.2),
ylim=ylims, yaxs="i",
col=cols[5], lwd=2,
main="Multitaper weighting factors by maximum tapers applied",
xlab="log10 taper sequence",
ylab="dB")

TFUN(DfU)
invisible(lapply(round(10**xseq), FUN=WFUN))
WFUN(maxx)

##

## End(Not run)#REX

pgram_compare Compare multitaper spectrum with cosine-tapered periodogram

Description

Plot the results of psdcore against the results of spec.pgram

Usage

pgram_compare(x, ...)

## S3 method for class 'amt'
pgram_compare(
x,
f = NULL,
X = NULL,
log.freq = TRUE,
db.spec = TRUE,
taper = 0.2,
...

)
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Arguments

x a single psdcore object

... additional parameters (currently unused)

f numeric; the frequency range to plot; optional: if not given the program will
show the entire band.

X object used to create x; optional: if not given the program will try and access the
last copy in the environment. An attempt is made to coerce to an object of class
'ts'.

log.freq logical; should frequencies be transformed with log10? Note that if f is given,
the values should not already be transformed.

db.spec logical; should the spectrum estimates be converted to decibels with dB?

taper numeric; specifies the proportion of data to taper for the cosine periodogram.

Value

A list with the cosine-tapered estimates and the adaptive estimates, invisibly.

Examples

set.seed(1234)
X <- rnorm(1e3)

# multitaper spectrum
p <- psdcore(X, ntaper=10)

# how does it compare to a single-cosine tapered spectrum?
pgram_compare(p)

# or in a certain band
pgram_compare(p, c(0.1,0.4))

# linear frequencies
pgram_compare(p, c(0.1,0.4), log.freq = FALSE)

phase phase

Description

Calculate phase from the spectra and cross spectrum. This method is the same as used in spec.pgram.

Usage

phase(pgram)
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Arguments

pgram numeric array must be multivariate

Value

list of phase. For multivariate time series a matrix containing the cross spectrum phase between
different series. The format is the same as coherence.

pilot_spec Calculate initial power spectral density estimates

Description

This PSD is used as the starting point – the pilot spectrum – for the adaptive estimation routine.

Usage

pilot_spec(x, ...)

## S3 method for class 'ts'
pilot_spec(x, ...)

## S3 method for class 'matrix'
pilot_spec(x, x.frequency, ...)

## Default S3 method:
pilot_spec(
x,
x.frequency = NULL,
ntap = NULL,
remove.AR = NULL,
plot = FALSE,
verbose = FALSE,
fast = FALSE,
...

)

Arguments

x vector; the data series to find a pilot spectrum for
... additional parameters passed to psdcore

x.frequency scalar; the sampling frequency (e.g. Hz) of the series
ntap scalar; the number of tapers to apply during spectrum estimation
remove.AR scalar; the max AR model to be removed from the data.
plot logical; should a plot be created?
verbose logical; should messages be given?
fast logical; use fast method in psdcore?
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Details

A fixed number of tapers is applied across all frequencies using psdcore, and subsequent taper-
refinements are based on the spectral derivatives of this spectrum; hence, changes in the number of
tapers can affect how many adaptive stages may be needed (though there are no formal convergence
criteria to speak of).

The taper series of the returned spectrum is constrained using as.tapers(..., minspan=TRUE).

The default behavior (remove.AR <= 0) is to remove the standard linear model [f(x) = αx + β]
from the data; however, the user can model the effect of an autoregressive process by specifying
remove.AR.

Value

Invisibly, an object with class 'spec', and "pilot_psd" in the working environment.

Removing an AR effect from the spectrum

If remove.AR > 0 the argument is used as AR.max in prewhiten, from which an AR-response spec-
trum is calculated using the best fitting model.

If the value of remove.AR is too low the spectrum could become distorted, so use with care. Note,
however, that the value of remove.AR will be restricted to within the range [1, 100]. If the AR order
is much larger than this, it’s unclear how prewhiten will perform and whether the AR model is
appropriate.

Note that this function does not produce a parametric spectrum estimation; rather, it will return the
amplitude response of the best-fitting AR model as spec.ar would. Interpret these results with
caution, as an AR response spectrum can be misleading.

Author(s)

A.J. Barbour

See Also

psdcore, prewhiten, spec.ar

Examples

## Not run: #REX
library(psd)

##
## Pilot spectrum
##

data(magnet)

## simply calculate the pilot spectrum with a few tapers
plot(pilot_spec(xc <- magnet$clean), log="dB",

main="Pilot PSDs for MAGNET and its AR-innovations (red)")
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## remove the effect of an AR model
# note: remove.AR -- the max AR model to be removed from the data
plot(pilot_spec(xc, remove.AR=10), log="dB", add=TRUE, col="red")

## End(Not run)#REX

prewhiten Prepare a series for spectral estimation

Description

Remove (optionally) mean, trend, and Auto Regressive (AR) model from the original series.

Usage

prewhiten(tser, ...)

## Default S3 method:
prewhiten(tser, x.fsamp = 1, x.start = c(1, 1), ...)

## S3 method for class 'ts'
prewhiten(
tser,
AR.max = 0L,
detrend = TRUE,
demean = TRUE,
impute = TRUE,
plot = TRUE,
verbose = TRUE,
...

)

Arguments

tser vector; An object to prewhiten.

... variables passed to prewhiten.ts (for non ts objects)

x.fsamp sampling frequency (for non ts objects)

x.start start time of observations (for non ts objects)

AR.max numeric; the maximum AR order to fit.

detrend logical; Should a trend (and mean) be removed?

demean logical; Should a mean value be removed?

impute logical; Should NA values be imputed?

plot logical; Should the results be plotted?

verbose logical; Should messages be printed?
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Details

The R-S multitapers do not exhibit the remarkable spectral-leakage suppression properties of the
Thomson prolate tapers, so that in spectra with large dynamic range, power bleeds from the strong
peaks into neighboring frequency bands of low amplitude – spectral leakage. Prewhitening can
ameliorate the problem, at least for red spectra [see Chapter 9, Percival and Walden (1993)].

The value of the AR.max argument is made absolute, after which this function has essentially two
modes of operation (detailed below):

AR.max == 0 Remove (optionally) a mean and/or linear trend.

AR.max > 0 Remove an autoregressive model

In the second case, the time series is filtered in the time domain with a finite-impulse-response filter
of AR.max terms. The filter is found by solving the Yule-Walker equations for which it is assumed
the series was generated by an autoregressive process, up to order AR.max.

Mean and trend (AR.max == 0):
Power spectral density estimates can become badly biased (especially at lower frequencies) if a
signal of the form f(x) = Ax + B is not removed from the series. If detrend=TRUE a model
of this form is removed over the entire series using a linear least-squares estimator; in this case a
mean value is removed regardless of the logical state of demean. To remove only a mean value,
set detrend=FALSE and (obviously) demean=TRUE.

Auto Regressive (AR) innovations (AR.max > 0):
When an autoregressive model is removed from a non-stationary series, the residuals are known
as ’innovations’, and may be stationary (or very-nearly stationary). This function fits an AR
model [order at least 1, but up to and including AR(AR.max)] to the series by solving the Yule-
Walker equations; however, AIC is used to estimate the highest significant order, which means
that higher-order components may not necessarily be fit. The resulting innovations can be used
to better estimate the stationary component of the original signal, and possibly in an interactive
editing method.
Note that the method used here–solving the Yule-Walker equations–is not a true maximum like-
lihood estimator; hence the AIC is calculated based on the variance estimate (no determinant).
From ?ar: In ar.yw the variance matrix of the innovations is computed from the fitted coefficients
and the autocovariance of x.
A quick way to determine whether this may be needed for the series is to run acf on the series,
and see if significant non-zero lag correlations are found. A warning is produced if the fit returns
an AR(0) fit, indicating that AR prewhitening most likely inappropriate for the series, which is
apparently stationary (or very nearly so). (The innovations could end up having higher variance
than the input series in such a case.)
Note that AR.max is restricted to the range [1, N − 1] where N is the series length.

Value

A list with the model fits (lm and ar objects), the linear and AR prewhitened series (ts objects), and
a logical flag indicating whether the I/O has been imputed. This list includes: "lmdfit", "ardfit",
"prew_lm", "prew_ar", and "imputed"

Note that if AR.max=0 the AR information will exist as NULL.
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NA values

NA values are allowed. If present, and impute=TRUE, the na.locf function in the package zoo
is used twice (with and without fromLast so that lead and trailing NA values are also imputed).
The function name is an acronym for "Last Observation Carried Forward", a very crude method of
imputation.

Author(s)

A.J. Barbour and Robert L. Parker

See Also

psdcore, pspectrum

Examples

## Not run: #REX
library(psd)

##
## Using prewhiten to improve spectral estimates
##

data(magnet)
mts <- ts(magnet$clean)
# add a slope
mts.slope <- mts + seq_along(mts)

# Prewhiten by removing mean+trend, and
# AR model; fit truncates the series by
# a few terms, so zero pad
mts <- prewhiten(mts.slope, AR.max=10, zero.pad="rear")
mts.p <- mts[['prew_lm']]
mts.par <- mts[['prew_ar']]

# uniformly-tapered spectral estimates
PSD <- psdcore(mts.p, ntaper=20)
PSD.ar <- psdcore(mts.par, ntaper=20)

# remove the effect of AR model
PSD.ar[['spec']] <- PSD.ar[['spec']] / mean(PSD.ar[['spec']])
PSD[['spec']] <- PSD[['spec']] / PSD.ar[['spec']]

plot(PSD, log='dB', lwd=2, ylim=c(-5,35))
plot(PSD, log='dB', add=TRUE, lwd=2, col="red")
plot(PSD.ar, log='dB', add=TRUE, col="blue", lwd=2)

## End(Not run)#REX
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psd-environment Various environment manipulation functions.

Description

The computation of adaptive power spectral density estimates requires bookkeeping and non-destructive
manipulation of variables. The functions here are mainly convenience wrappers designed to main-
tain variable separation from the .GlobalEnv environment so that no innocent variable is destroyed
in the process of iteratively computing spectra. The user should generally not be using the setters
even though all functions exist in the namespace.
get_psd_env_pointer is a convenience wrapper to get the environment pointer.

get_psd_env_name is a convenience wrapper to get the environment name.

psd_envRefresh will clear any variables in the environment and reset the initialization stamp.

psd_envClear clears the contents of the environment.

psd_envStatus returns a list of some information regarding the status of the environment.

psd_envList returns a listing of any assignments.

psd_envGet returns the value of variable.

psd_envAssign assigns value to variable, but does not return it.

psd_envAssignGet both assigns and returns a value.

update_adapt_history updates the adaptive estimation history list.

new_adapt_history initializes a nested-list object to store the data from each iteration.

Usage

get_psd_env_pointer()

get_psd_env_name()

psd_envRefresh(verbose = TRUE)

psd_envClear()

psd_envStatus()

psd_envList()

psd_envGet(variable)

psd_envAssign(variable, value)

psd_envAssignGet(variable, value)

get_adapt_history()
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last_psd()

update_adapt_history(PSD, stage, ...)

## S3 method for class 'spec'
update_adapt_history(PSD, stage, ...)

## Default S3 method:
update_adapt_history(PSD, stage, ntap = NA, freq = NULL, ...)

new_adapt_history(adapt_stages)

Arguments

verbose logical; should messages be given?

variable character; the name of the variable to get or assign

value character; the name of the variable to assign

PSD vector or object with class 'spec'; the power spectral density estimates

stage scalar; the current stage of the adaptive estimation procedure

... additional arguments

ntap vector; the tapers

freq vector; the frequencies

adapt_stages scalar; The number of adaptive iterations to save (excluding pilot spectrum).

Defaults and Initialization

One can use get_psd_env_pointer() and get_psd_env_name() to access the pointer and name
of the environment, if needed.

psd_envRefresh should be used when a fresh environment is desired: typically only if, for exam-
ple, psdcore is used rather than pspectrum.

Assigning and Retrieving

psd_envAssign and psd_envGet perform the assignments and retrieval of objects in the environ-
ment. A convenience function, psd_envAssignGet, is included so that both assignment and re-
trieval may be performed at the same time. This ensures the assignment has succeeded, and the
returned value is not from some other frame.

Getters and Setters

The functions here can be classified whether the get, or set variables in the environment; some do
both. Others make no modifications to the environment.

Getter:
• get_adapt_history
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• get_psd_env_name

• get_psd_env_pointer

• psd_envGet

• psd_envList

• psd_envStatus

Setter:
• new_adapt_history

• psd_envAssign

Getter and Setter:
• psd_envAssignGet

• psd_envClear

• psd_envRefresh

• update_adapt_history

Adaptive History

The list object for historical adapt-data may be accessed with get_adapt_history. The top names
of the returned list are

stg_kopt Sequential taper vectors.

stg_psd Sequential power spectral density vectors.

freq The frequencies for each set of stg_kopt and stg_psd.

Note

psd_envClear does not remove the environment–simply the assignments within it.

See Also

psd-utilities, pspectrum

Examples

## Not run: #REX
library(psd)

##
## psd working environment
##

# Get some status information about the psd working environment
psd_envStatus()

# Get a list of all variables
psd_envList()

# Pull the variable "init" into .GlobalEnv
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print(x <- psd_envGet("init"))

# Pull the adaptive history into .GlobalEnv
set.seed(1234)
X <- rnorm(1e3)
pspectrum(X)
get_adapt_history()

## End(Not run)#REX

psd-normalization Normalization of power spectral density estimates.

Description

Normalize power spectral densities from various estimators into single-sided spectra.

Usage

normalize(Spec, ...)

## S3 method for class 'list'
normalize(Spec, ...)

## S3 method for class 'spec'
normalize(
Spec,
Fsamp = 1,
src = c("spectrum", "double.sided", "psd", "single.sided"),
verbose = TRUE,
...

)

## S3 method for class 'amt'
normalize(Spec, ...)

Arguments

Spec spectrum to normalize

... (unused) additional parameters

Fsamp sampling frequency

src character string; the source of the spectrum estimator

verbose logical; should messages be given?
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Details

Normalizations commonly encountered for power spectra depend on it’s assumed sidedness: whether
the spectrum is either single- or double-sided. The normalizations performed here enforce single-
sidedness, and correct as necessary.

Frequencies are assumed to be based on the Nyquist frequency (half the sampling rate). For exam-
ple: If a series X has sampling frequency FS , then the PSD frequencies will span [0, FS/2].

For amplitudes, improper normalization can can introduce errant factors of either 1/2 or FS into the
estimates, depending on the assumed sidedness. These factors can be accounted for with the src
argument, which defaults to normalizing a double-sided spectrum.

Value

An object with its spectral values normalized accordingly.

Spectrum sidedness and the src argument

"double.sided" or "spectrum":
These spectra assume frequency range of [−FS/2, FS/2], and so are normalized by scaling by a
factor of two upwards. Some estimators producing double-sided spectra:

• stats::spectrum

• RSEIS::mtapspec

"single.sided" or "psd": As mentioned before, these spectra assume frequency range of
[0, FS/2] and are scaled only by the inverse of the sampling rate. Some estimators producing
single-sided spectra:

• psdcore

Author(s)

A.J. Barbour

See Also

psdcore, spectral_properties

Examples

## Not run: #REX
library(psd)

##
## Normalization
##

# timeseries with sampling frequency **not** equal to 1:
set.seed(1234)
X <- ts(rnorm(1e3), frequency=20)

# spec.pgram: double sided
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pgram <- spectrum(X)

# psdcore: single sided
PSD <- psdcore(X)

# note the normalization differences:
plot(pgram, log="dB", ylim=c(-40,10))
plot(PSD, add=TRUE, col="red", log="dB")

# A crude representation of integrated spectrum:
# should equal variance of white noise series (~= 1)
mean(pgram[['spec']]) * max(pgram[['freq']])
mean(PSD[['spec']]) * max(PSD[['freq']])

# normalize
pgram <- normalize(pgram, src="spectrum")
PSD <- normalize(pgram, src="psd")
# replot them
plot(pgram, log="dB", ylim=c(-40,10))
plot(PSD, add=TRUE, col="red", log="dB")

# Again, integrated spectrum should be ~= 1:
mean(pgram[['spec']]) * max(pgram[['freq']])
mean(PSD[['spec']]) * max(PSD[['freq']])

## End(Not run)#REX

psd-utilities Various utility functions.

Description

The various utility functions are:

na_locf is meant as a simple replacement for zoo::na.locf which carries the last observation for-
ward; here we force both directions, meaning the first observation is carried backwards as well.

vardiff returns the variance of the first (or second) difference of the series. varddiff is a conve-
nience wrapper to return variance for the second difference.

create_poly generates an x-y sequence compatible for use with polygon

dB returns an object converted to decibels.

vector_reshape reshapes a vector into another vector.

colvec returns the object as a vertically long vector; whereas rowvec returns the object as a hori-
zontally long vector.

is.spec and is.amt report whether an object has class 'spec' or 'amt', as would one returned
by, for example, spectrum or psdcore.
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is.tapers reports whether an object has class 'tapers', as would one returned by, for example,
as.tapers.

na_mat populates a matrix of specified dimensions with NA values.

zeros populate a column-wise matrix with zeros; whereas, ones populates a column-wise matrix
with ones. Note that n is enforced to be at least 1 for both functions.

mod finds the modulo division of two values

Usage

na_locf(x)

## S3 method for class 'matrix'
na_locf(x)

## Default S3 method:
na_locf(x)

vardiff(x, double.diff = FALSE)

varddiff(x)

## S3 method for class 'spec'
varddiff(x)

## Default S3 method:
varddiff(x)

create_poly(x, y, dy, from.lower = FALSE)

dB(Rat, invert = FALSE, pos.only = TRUE, is.power = FALSE)

vector_reshape(x, vec.shape = c("horizontal", "vertical"))

colvec(x)

rowvec(x)

is.spec(Obj)

is.amt(Obj)

is.tapers(Obj)

na_mat(nrow, ncol = 1)

zeros(nrow)

ones(nrow)
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mod(x, y)

Arguments

x, y objects; in create_poly these are the vectors used to create a polygon-compatible
sequence (x is sorted by default); in mod these are the "numerator" and "denom-
inator", respectively.

double.diff logical; should the double difference be used instead?

dy numeric; the distance from y to the top and bottom of the polygonal surfaces;
see from.lower

from.lower logical; should the bottom be y instead of y+dy, so that dy represents the distance
from the lower surface?

Rat numeric; the values – ratios – to convert to decibels (dB).

invert logical; assumes Rat is already in decibels, so return ratio

pos.only logical; if invert=FALSE, sets negative or zero values to NA

is.power logical; should the factor of 2 be included in the decibel calculation?

vec.shape choice between horizontally-long or vertically-long vector.

Obj An object to test for class inheritance.

nrow, ncol integer; the number of rows and/or columns to create

Details

Decibels are defined as 10 log 10
X1

X2
, unless is.power=TRUE in which dbX2 ≡ 20 log 10X

2

colvec, rowvec are simple wrapper functions to vector_reshape.

Modulo division has higher order-of-operations ranking than other arithmetic operations; hence, x
+ 1 %% y is equivalent to x + (1 %% y) which can produce confusing results. mod is simply a series
of trunc commands which reduces the chance for unintentionally erroneous results.

Value

vector_reshape returns a "reshaped" vector, meaning it has had it’s dimensions changes so that it
has either one row (if vec.shape=="horizontal"), or one column ("vertical").

is.spec, is.amt, and is.tapers return the output of inherits.

na_mat returns a matrix of dimensions (nrow,ncol) with NA values, the representation of which is
set by NA_real_

mod returns the result of a modulo division, which is equivalent to (x) %% (y).

Note

The performance of mod has not been tested against the %% arithmetic method – it may or may not
be slower for large numeric vectors.

Author(s)

A.J. Barbour
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References

For mod: see Peter Dalgaard’s explanation of the non-bug (#14771) I raised (instead I should’ve
asked it on R-help): https://bugs.r-project.org/show_bug.cgi?id=14771

See Also

psd-package, as.tapers, modulo_floor

Examples

## Not run: #REX
library(psd)

##
## Various utilities
##

set.seed(1234)
X <- rnorm(1e2)

#
# Matrix and vector creation:
#
# NA matrix
nd <- 5
na_mat(nd)
na_mat(nd,nd-1)

# zeros
zeros(nd)

# and ones
ones(nd)

#
# Check for tapers object:
#
is.tapers(X)
is.tapers(as.tapers(X))

#
# Check for spec object:
#
PSD <- spectrum(X, plot=FALSE)
plot(PSD)
# return is class 'spec'
is.spec(PSD) # TRUE
# but the underlying structure is just a list
PSD <- unclass(PSD)
is.spec(PSD) # FALSE

#

https://bugs.r-project.org/show_bug.cgi?id=14771
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# decibels
#
dB(1) # signal is equal <--> zero dB
sig <- 1e-10
all.equal(sig, dB(dB(sig), invert=TRUE))
pow <- sig**2
all.equal(pow, dB(dB(sig, is.power=TRUE), invert=TRUE, is.power=TRUE))

#
# Variance of difference series
#
vardiff(X) # first difference
varddiff(X) # second difference
all.equal(vardiff(X, TRUE), varddiff(X))

#
# modulo division
#
x <- 1:10
mc1a <- mod(1,2)
mc2a <- mod(1+x,2)
mc1b <- 1 %% 2
mc2b <- 1 + x %% 2
mc2c <- (1 + x) %% 2
all.equal(mc1a, mc1b) # TRUE
all.equal(mc2a, mc2b) # "Mean absolute difference: 2"
all.equal(mc2a, mc2c) # TRUE
# on a series
modulo_floor(1:10) # defaults to 2
modulo_floor(1:10, 3)

## End(Not run)#REX

psdcore Multitaper power spectral density estimates of a series

Description

Compute power spectral density (PSD) estimates for the input series using sine multitapers. This is
used by pspectrum for the adaptive estimation procedure.

Usage

psdcore(X.d, ...)

## S3 method for class 'ts'
psdcore(X.d, ...)

## S3 method for class 'matrix'
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psdcore(X.d, X.frq, ...)

## Default S3 method:
psdcore(
X.d,
X.frq = NULL,
ntaper = as.tapers(5),
preproc = TRUE,
na.action = stats::na.fail,
plot = FALSE,
refresh = FALSE,
verbose = FALSE,
fast = FALSE,
ndecimate,
...

)

Arguments

X.d the series to estimate a spectrum for
... additional parameters
X.frq scalar; the sampling information (see section Sampling)
ntaper scalar, vector, or tapers; the number of sine tapers to apply at each frequency
preproc logical; should X.d have a linear trend removed?
na.action function to deal with NA values
plot logical; should the estimates be shown compared to the spectrum-based esti-

mates? Note that this will add some computation time, since the cosine-tapered
periodogram is calculated inside pgram_compare.

refresh logical; ensure a free environment prior to execution
verbose logical; should warnings and messages be given?
fast logical; use the faster method?
ndecimate now ignored

Details

Tapering: The parameter ntaper specifies the number of sine tapers to be used at each fre-
quency: equal tapers at each frequency for a scalar; otherwise, use ntaper[j] sine tapers at
frequency[j].

Truncation: The series, with length N , is necessarily truncated so that 1+N/2 evenly spaced fre-
quencies are returned. This truncation makes the series length “highly composite", which the dis-
crete Fourier transform (DFT) is most efficient. The "fftw" vignette (accessed with vignette("fftw",package="psd"))
shows how the performance of a DFT can be affected by series length.

Decimation: No longer supported. Setting ndecimate will not affect the results

Sampling: If X.frq is NULL, the value is assumed to be 1, unless X.d is a 'ts' object. If X.frq
> 0 it’s assumed the value represents frequency (e.g. Hz). If X.frq < 0 it’s assumed the value
represents interval (e.g. seconds).
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Value

An on object of class 'amt','spec', which has a structure similar to a regular 'spec' object, but
with a few additional fields, invisibly.

Author(s)

A.J. Barbour; original algorithm by R.L. Parker.

See Also

pspectrum, riedsid, parabolic_weights, pgram_compare

Examples

## Not run: #REX
library(psd)

##
## Multitaper PSD estimation
##

set.seed(1234)
X <- rnorm(1e3)

# use the defaults, and appeal to plot.spec
# sampling assumed to be 1
plot(psdcore(X))

# use more tapers, compare to stats::spectrum, and clear
# env data from the previous calculation
psdcore(X, ntaper=10, plot=TRUE, refresh=TRUE)

# change the sampling frequency to 20
psdcore(X, X.frq=20, ntaper=10, plot=TRUE, refresh=TRUE)

## End(Not run)#REX

pspectrum Adaptive sine multitaper power spectral density estimation

Description

This is the primary function to be used in this package: it returns power spectral density estimates
of a timeseries, with an optimal number of tapers at each frequency based on iterative reweighted
spectral derivatives. If the object given is a multicolumn object, the cross spectrum (multivariate
PSD) will be calculated using the same iterative procedure.
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Usage

pspectrum(x, ...)

## S3 method for class 'ts'
pspectrum(x, output_column = NULL, ...)

## S3 method for class 'matrix'
pspectrum(x, x.frqsamp, ...)

## S3 method for class 'spec'
pspectrum(x, ...)

## Default S3 method:
pspectrum(
x,
x.frqsamp = 1,
ntap.init = NULL,
niter = 3,
output_column = NULL,
AR = FALSE,
Nyquist.normalize = TRUE,
verbose = TRUE,
no.history = FALSE,
plot = FALSE,
...

)

pspectrum_basic(x, ntap.init = 7, niter = 5, verbose = TRUE, ...)

adapt_message(stage, dvar = NULL)

Arguments

x vector; series to find PSD estimates for; if this is a multicolumn object, a cross
spectrum will be calculated.

... Optional parameters passed to riedsid2

output_column scalar integer; If the series contains multiple columns, specify which column
contains the output. The default assumes the last column is the output and the
others are all inputs.

x.frqsamp scalar; the sampling rate (e.g. Hz) of the series x; equivalent to frequency.
ntap.init scalar; the number of sine tapers to use in the pilot spectrum estimation; if NULL

then the default in pilot_spec is used.
niter scalar; the number of adaptive iterations to execute after the pilot spectrum is

estimated.
AR logical; should the effects of an AR model be removed from the pilot spectrum?
Nyquist.normalize

logical; should the units be returned on Hz, rather than Nyquist?
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verbose logical; Should messages be given?

no.history logical; Should the adaptive history not be saved?

plot logical; Should the results be plotted?

stage integer; the current adaptive stage (0 is pilot)

dvar numeric; the spectral variance; see also vardiff etc

Details

See the Adaptive estimation section in the description of the psd-package for details regarding
adaptive estimation.

NEW as of version 2.0: use pspectrum to calculate the cross spectrum if x is a multi-column array.

pspectrum_basic is a simplified implementation used mainly for testing.

Value

Object with class ’spec’, invisibly. It also assigns the object to "final_psd" in the working envi-
ronment.

Author(s)

A.J. Barbour adapted original by R.L. Parker

See Also

psdcore, pilot_spec, riedsid2, prewhiten

Examples

## Not run: #REX
library(psd)
library(RColorBrewer)

##
## Adaptive multitaper PSD estimation
## (see also the "psd_overview" vignette)
##

data(magnet)
Xr <- magnet$raw
Xc <- magnet$clean

# adaptive psd estimation (turn off diagnostic plot)
PSDr <- pspectrum(Xr, plot=FALSE)
PSDc <- pspectrum(Xc, plot=FALSE)

# plot them on the same scale
plot(PSDc, log="dB",

main="Raw and cleaned Project MAGNET power spectral density estimates",
lwd=3, ci.col=NA, ylim=c(0,32), yaxs="i")
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plot(PSDr, log="dB", add=TRUE, lwd=3, lty=5)
text(c(0.25,0.34), c(11,24), c("Clean","Raw"), cex=1)

## Change sampling, and inspect the diagnostic plot
plot(pspectrum(Xc, niter=1, x.frqsamp=10, plot=TRUE))

## Say we forgot to assign the results: we can recover from the environment with:
PSDc_recovered <- psd_envGet("final_psd")
plot(PSDc_recovered)

## End(Not run)#REX

rcpp_ctap_simple c++ implementation of the RLP constraint filter

Description

c++ implementation of the RLP constraint filter

Usage

rcpp_ctap_simple(tapvec, maxslope = 1L)

Arguments

tapvec integer or 'tapers' object; the number of tapers at each frequency
maxslope integer; constrain based on this maximum first difference

resample_fft_rcpp Resample an fft using varying numbers of sine tapers

Description

Produce an un-normalized psd based on an fft and a vector of optimal sine tapers

Usage

resample_fft_rcpp(fftz, tapers, verbose = TRUE, dbl = TRUE, tapcap = 1000L)

Arguments

fftz complex; a vector representing the dual-length fft; see also the dbl argument
tapers integer; a vector of tapers
verbose logical; should messages be given?
dbl logical; should the code assume fftz is dual-length or single-length?
tapcap integer; the maximum number of tapers which can be applied; note that the

length is automatically limited by the length of the series.
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Details

To produce a psd estimate with our adaptive spectrum estimation method, we need only make one
fft calculation initially and then apply the weighting factors given by parabolic_weights_rcpp,
which this function does.

See Also

riedsid

Examples

fftz <- complex(real=1:8, imaginary = 1:8)
taps <- 1:4
try(resample_fft_rcpp(fftz, taps))

resample_mvfft Resample an fft using varying numbers of sine tapers

Description

Produce an un-normalized psd based on an fft and a vector of optimal sine tapers.

Usage

resample_mvfft(fftz, tapers, verbose = TRUE, dbl = TRUE, tapcap = 10000L)

Arguments

fftz complex; a matrix representing the dual-length fft; see also the dbl argument

tapers integer; a vector of tapers

verbose logical; should messages be given?

dbl logical; should the code assume fftz is dual-length or single-length?

tapcap integer; the maximum number of tapers which can be applied; note that the
length is automatically limited by the length of the series.

Details

To produce a psd estimate with our adaptive spectrum estimation method, we need only make one
fft calculation initially and then apply the weighting factors given by parabolic_weights, which
this function does.

Value

list that includes the auto and cross-spectral density, and the number of tapers
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See Also

riedsid

Examples

fftz <- complex(real=1:8, imaginary = 1:8)
taps <- 1:4
try(resample_mvfft(fftz, taps))

riedsid Constrained, optimal tapers using the Riedel & Sidorenko–Parker
method

Description

Estimates the optimal number of tapers at each frequency of given PSD, using a modified Riedel-
Sidorenko MSE recipe (RS-RLP).

Usage

riedsid(PSD, ...)

## S3 method for class 'spec'
riedsid(PSD, ...)

## Default S3 method:
riedsid(
PSD,
ntaper = 1L,
tapseq = NULL,
Deriv.method = c("local_qls", "spg"),
constrained = TRUE,
c.method = NULL,
verbose = TRUE,
...

)

riedsid2(PSD, ...)

## S3 method for class 'spec'
riedsid2(PSD, ...)

## Default S3 method:
riedsid2(
PSD,
ntaper = 1L,
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constrained = TRUE,
verbose = TRUE,
fast = FALSE,
riedsid_column = 0L,
...

)

Arguments

PSD vector or class 'amt' or 'spec'; the spectral values used to optimize taper num-
bers

... optional arguments passed to constrain_tapers

ntaper scalar or vector; number of tapers to apply optimization

tapseq vector; representing positions or frequencies (same length as PSD)

Deriv.method character; choice of gradient estimation method

constrained logical; apply constraints with constrain_tapers; FALSE turns off constraints

c.method string; constraint method to use with constrain_tapers, only if constrained=TRUE

verbose logical; should messages be printed?

fast logical; use faster method?

riedsid_column scalar integer; which column to use in multivariate optimization. If the value is
0 the maximum number of tapers for all columns is chosen. If the value is < 0
the minimum number of tapers for all columns is chosen. If the value is 1, 2, 3,
etc. the number of tapers is based on the column selected.

Details

The optimization is as follows. First, weighted derivatives of the input PSD are computed. Using
those derivatives the optimal number of tapers is found through the RS-RLP formulation. Con-
straints are then placed on the practicable number of tapers.

riedsid2 is a new (faster) implementation which does not allow for multiple constraint methods;
this is the preferred function to use.

Taper constraints: The parameter c.method provides an option to change the method of taper
constraints. A description of each may be found in the documentation for constrain_tapers.
Once can use constrained=FALSE to turn off all taper constraints; this could lead to strange
behavior though.

Spectral derivatives: The parameter Deriv.method determines which method is used to esti-
mate derivatives.

• "local_qls" (default) uses quadratic weighting and local least-squares estimation; this can
be slower than "spg".

• "spg" uses splineGrad; then, additional arguments may be passed to control the smoothness
of the derivatives (e.g spar in smooth.spline).

Value

Object with class 'tapers'
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Warning

The "spg" can become numerically unstable, and it’s not clear when it will be the preferred over
the "local_qls" method, other than for efficiency’s sake.

Author(s)

A.J. Barbour adapted original by R.L. Parker

See Also

constrain_tapers, resample_fft_rcpp, psdcore, pspectrum

Examples

## Not run: #REX
library(psd)

##
## Riedel-Sidorenko-Parker taper optimization
##

set.seed(1234)
# some params
nd <- 512 # num data
ntap <- 10 # num tapers
nrm <- 40 # sharpness of the peaks rel 2*variance
#
# create a pseudo spectrum
# with broad peaks
x <- 0:(nd-1)
riex <- rnorm(nd) + nrm*abs(cos(pi*x/180) + 1.2)
riex <- riex + 8*nrm*dcauchy(x, nd/3)
riex <- riex + 5*nrm*dnorm(x, nd/2)
# some flat regions
riex[riex<25] <- 25
ried <- dB(riex, invert=TRUE)

# optimize tapers
rtap <- riedsid(riex, ntaper=ntap) # deprecation warning
rtap2 <- riedsid2(riex, ntaper=ntap)
rtap3 <- riedsid2(riex, ntaper=ntap, fast=TRUE)

# plot
op <- par(no.readonly = TRUE)
par(mfrow=c(2,1), mar=rep(1.3,4), mai=rep(0.6,4))
# ... the mock spectrum
plot(riex, type="h", xaxs="i", ylim=c(0,200),

main='Pseudo-spectrum')

# ... tapers
plot(rtap2, col=NA, xaxs="i",

main='Original and Optimized tapers',
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ylim=c(0,max(c(ntap, rtap,rtap2,rtap3))))
# original tapers:
abline(h=ntap, lty=2)
# optimized tapers
lines(rtap, col="red")
# 2 and 2-fast
lines(rtap2, lwd=3, col="blue")
lines(rtap3, col="cyan")
par(op)

## End(Not run)#REX

riedsid_rcpp replaces time consuming portion of riedsid2

Description

replaces time consuming portion of riedsid2

Usage

riedsid_rcpp(PSD, ntaper, riedsid_column = 0L)

Arguments

PSD vector or class 'amt' or 'spec'; the spectral values used to optimize taper num-
bers

ntaper scalar or vector; number of tapers to apply optimization

riedsid_column scalar integer; which column to use in multivariate optimization. If the value is
0 the maximum number of tapers for all columns is chosen. If the value is < 0
the minimum number of tapers for all columns is chosen. If the value is 1, 2, 3,
etc. the number of tapers is based on the column selected.

Value

kopt vector
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spec-methods Generic methods for objects with class ’spec’

Description

Generic methods for objects with class 'spec'

Usage

## S3 method for class 'spec'
lines(x, y = NULL, type = "l", ...)

spec_details(x, ...)

## S3 method for class 'spec'
as.data.frame(x, ...)

## S3 method for class 'spec'
as.matrix(x, ...)

## S3 method for class 'spec'
as.list(x, ...)

Arguments

x a 'spec' object

y optional coordinate vector for the y-axis

type character; the type of plot

... optional arguments

Details

Objects with class 'spec' are simply lists with spectral estimates and parameters as.data.frame
converts the list into a 'data.frame' with individual columns for the frequency, PSD, and taper
vectors; all other information will be retained as a list in the attributes.

Author(s)

A.J. Barbour

Examples

## Not run: #REX
library(psd)

##
## Objects with class 'spec'
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##

set.seed(1234)
xn <- rnorm(10)
x <- spectrum(xn, plot=FALSE)
xc <- psdcore(xn)

xdf <- as.data.frame(x)
str(xdf)
is.tapers(xdf$taper)

xdfc <- as.data.frame(xc)
str(xdfc)
is.tapers(xdfc$taper)

## End(Not run)#REX

spectral_properties Calculate properties of multitaper power spectral density estimates

Description

Various spectral properties may be computed from the vector of tapers, and if necessary the sam-
pling frequency.

Usage

spectral_properties(x, ...)

## S3 method for class 'spec'
spectral_properties(x, ...)

## S3 method for class 'tapers'
spectral_properties(x, ...)

## Default S3 method:
spectral_properties(x, f.samp = 1, n.freq = NULL, p = 0.95, db.ci = FALSE, ...)

Arguments

x object to calculate spectral properties for; or a vector of number of tapers

... additional arguments

f.samp numeric; the sampling frequency (e.g. Hz) of the series the tapers are for

n.freq integer; the number of frequencies of the original spectrum (if NULL the length
of the tapers object is assumed to be the number)

p numeric; the coverage probability, bound within [0, 1)

db.ci logical; should the uncertainty confidence intervals be returned as decibels?
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Details

Parameter Details:

Uncertainty: See spec_confint for details.

Resolution: The frequency resolution depends on the number of tapers (K), and is found from

K · fN
Nf

where fN is the Nyquist frequency and Nf is the number of frequencies estimated.

Degrees of Freedom: There are two degrees of freedom for each taper K:

ν = 2K

Bandwidth: The bandwidth of a multitaper estimate depends on the number of tapers. Following
Walden et al (1995) the effective bandwidth is ≈ 2W where

W =
K + 1

2N

and N is the number of terms in the series, which makes N ·W the approximate time-bandwidth
product.

Value

A list with the following properties (and names):

• taper: the number of tapers

• stderr.chi .upper, .lower, .median: results returned from spec_confint

• resolution: effective spectral resolution

• dof: degrees of freedom; will be slightly inaccurate for single-taper periodograms

• bw: effective bandwidth of the spectrum

Author(s)

A.J. Barbour

See Also

spec_confint, psd-package

Examples

## Not run: #REX
library(psd)

##
## Spectral properties from the number of tapers used
## (portions extracted from overview vignette)
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##

#
# Theoretical uncertainties from Chi^2 distribution
#
sp <- spectral_properties(as.tapers(1:50), p=0.95, db.ci=TRUE)
par(las=1)
plot(stderr.chi.upper ~ taper, sp, type="s",

ylim=c(-10,20), yaxs="i", xaxs="i",
xlab=expression("number of tapers ("* nu/2 *")"), ylab="dB",
main="Spectral uncertainties")

lines(stderr.chi.lower ~ taper, sp, type="s")
lines(stderr.chi.median ~ taper, sp, type="s", lwd=2)
lines(stderr.chi.approx ~ taper, sp, type="s", col="red",lwd=2)

#
# An example using the Project MAGNET dataset
#
data(magnet)
tapinit <- 15 # tapers
dt <- 1 # 1/km

# remove mean/trend (not really necessary but good practice; also, done internally)
ats <- prewhiten(ts(magnet$clean, deltat=dt), plot=FALSE)$prew_lm

# normal and adaptive multitaper spectra
Pspec <- psdcore(ats, dt, tapinit)
Aspec <- pspectrum(ats, dt, tapinit, niter=3, plot=FALSE)

# calculate spectral properties
spp <- spectral_properties(Pspec$taper, db.ci=TRUE)
spa <- spectral_properties(Aspec$taper, db.ci=TRUE)

# function to create polygon data, and create them
pspp <- create_poly(Pspec$freq, dB(Pspec$spec), spp$stderr.chi.approx)
psppu <- create_poly(Pspec$freq, dB(Pspec$spec), spp$stderr.chi.upper)
pspa <- create_poly(Aspec$freq, dB(Aspec$spec), spa$stderr.chi.approx)
pspau <- create_poly(Aspec$freq, dB(Aspec$spec), spa$stderr.chi.upper)

##
## Project MAGNET uncertainties
##
plot(c(0,0.5),c(-8,35),col="white",

main="Project MAGNET Spectral Uncertainty (p > 0.95)",
ylab="", xlab="spatial frequency, 1/km", yaxt="n", frame.plot=FALSE)

lines(c(2,1,1,2)*0.01,c(5,5,8.01,8.01)-8)
text(.05, -1.4, "3.01 dB")
polygon(psppu$xx, (psppu$yy), col="light grey", border="black", lwd=0.5)
polygon(pspp$xx, (pspp$yy), col="dark grey", border=NA)
text(0.15, 6, "With adaptive\ntaper refinement", cex=1.2)
polygon(pspau$xx, (pspau$yy)-10, col="light grey", border="black", lwd=0.5)
polygon(pspa$xx, (pspa$yy)-10, col="dark grey", border=NA)
text(0.35, 22, "Uniform tapering", cex=1.2)
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##
## Project MAGNET resolution
##
frq <- Aspec$freq
relp <- dB(1/spa$resolution)
par(las=1)
plot(frq, relp,

col="light grey",
ylim=dB(c(1,5)),
type="h", xaxs="i", yaxs="i",
ylab="dB", xlab="frequency, 1/km",
main="Project MAGNET Spectral Resolution and Uncertainty")

lines(frq, relp)
lines(frq, spp$stderr.chi.upper+relp, lwd=1.5, lty=3)
lines(frq, spa$stderr.chi.upper+relp, lwd=3, lty=2)
abline(h=dB(sqrt(vardiff(Aspec$spec))), lwd=1.5, lty=2, col="red")

##

## End(Not run)#REX

spec_confint Confidence intervals for multitaper power spectral density estimates

Description

Confidence intervals for multitaper power spectral density estimates

Usage

spec_confint(x, ...)

## S3 method for class 'spec'
spec_confint(x, ...)

## S3 method for class 'tapers'
spec_confint(x, ...)

## Default S3 method:
spec_confint(x, ...)

.spec_confint(dof, p = 0.95, as.db = FALSE, ...)

Arguments

x object to calculate spectral properties

... additional arguments
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dof numeric; the degrees of freedom ν

p numeric; the coverage probability p, bound within [0, 1)

as.db logical; should the values be returned as decibels?

Details

The errors are estimated from the number of degrees of freedom ν by evaluating the χ2
p,ν(ν, ν)

distribution for an optional coverage probability p (defaulting to p = 0.95). Additionally, the
p = 0.5 values and an approximation from 1/

√
ν − 1 are returned.

A more sophisticated (and complicated) approach would be to estimate via jack-knifing (Prieto et
al 2007), but this is not yet made available.

Additive uncertainties δS are returned, such that the spectrum with confidence interval is S ± δS.

Value

A data.frame with the following properties (and names):

• lower: Based on upper tail probabilities (p)

• upper: Based on lower tail probabilities (1− p)

• median: Based on lower tail probabilities (p = 0.5)

• approx: Approximation based on 1/
√
(ν − 1).

Author(s)

A.J. Barbour; some code modified from the spec.ci function inside stats::plot.spec

See Also

spectral_properties, psd-package, stats::plot.spec, dB

Examples

## Not run: #REX
library(psd)

##
## Confidence intervals from taper numbers
##

sp <- spectral_properties(as.tapers(1:50), p=0.95, db.ci=TRUE)

# standard errors as a function of tapers
par(las=1)
plot(stderr.chi.upper ~ taper, sp, type="s",

ylim=c(-10,20), yaxs="i", xaxs="i",
xlab=expression("number of tapers ("* nu/2 *")"), ylab="dB",
main="Spectral uncertainties")

mtext("(additive factor)", line=.3)
lines(stderr.chi.lower ~ taper, sp, type="s")
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lines(stderr.chi.median ~ taper, sp, type="s", lwd=2)
lines(stderr.chi.approx ~ taper, sp, type="s", col="red",lwd=2)
# indicate K needed to reach 3 dB wide confidence interval (p=.95)
abline(v=33, lty=3)
legend("topright",

c(expression("Based on "* chi^2 *"(p,"*nu*") and (1-p,"*nu*")"),
expression(""* chi^2 *"(p=0.5,"*nu*")"),
"approximation"),

lwd=c(1,3,3),
col=c("black","black","red"),
bg="grey98")

## End(Not run)#REX

splineGrad Numerical derivatives of a series based on its smooth-spline represen-
tation

Description

This computes the numerical derivatives of a spline representation of the input series; differentiation
of spline curves is numerically efficient.

Usage

splineGrad(dseq, dsig, ...)

## Default S3 method:
splineGrad(dseq, dsig, plot.derivs = FALSE, ...)

Arguments

dseq numeric; a vector of positions for dsig.

dsig numeric; a vector of values (which will have a spline fit to them).

... additional arguments passed to smooth.spline

plot.derivs logical; should the derivatives be plotted?

Details

With smoothing, the numerical instability for "noisy" data can be drastically reduced, since spline
curves are inherently (at least) twice differentiable.

Value

A matrix with columns representing x, f(x), f ′(x), f ′′(x)
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Author(s)

A.J. Barbour

See Also

smooth.spline, constrain_tapers

Examples

## Not run: #REX
library(psd)

##
## Spline gradient
##

set.seed(1234)
x <- seq(0,5*pi,by=pi/64)
y <- cos(x) #**2

splineGrad(x, y, TRUE)

# unfortunately, the presence of
# noise will affect numerical derivatives
y <- y + rnorm(length(y), sd=.1)
splineGrad(x, y, TRUE)

# so change the smoothing used in smooth.spline
splineGrad(x, y, TRUE, spar=0.2)
splineGrad(x, y, TRUE, spar=0.6)
splineGrad(x, y, TRUE, spar=1.0)

## End(Not run)#REX

tapers-constraints Taper constraint methods

Description

In the Riedel-Sidorenko recipe, the number of optimal tapers at each frequency is strongly depen-
dent on the first and second derivatives of the spectrum. It is crucial to enforce constraints on the
number of actual tapers applied; this is because the derivatives of "noisy" series can be bogus.

constrain_tapers refines the number of tapers at each frequency.

minspan sets bounds on the number of tapers at each frequency.
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Usage

constrain_tapers(tapvec, ...)

## S3 method for class 'tapers'
constrain_tapers(tapvec, ...)

## Default S3 method:
constrain_tapers(
tapvec,
tapseq = NULL,
constraint.method = c("simple.slope", "loess.smooth", "none"),
verbose = TRUE,
...

)

minspan(tapvec, ...)

## S3 method for class 'tapers'
minspan(tapvec, ...)

## Default S3 method:
minspan(tapvec, Kmin = NULL, Kmax = NULL, ...)

Arguments

tapvec integer or 'tapers' object; the number of tapers at each frequency

... optional arguments

tapseq numeric; positions or frequencies – necessary for smoother methods
constraint.method

character; method to use for constraints on tapers numbers

verbose logical; should warnings and messages be given?

Kmin numeric; the minimum to set; default is 1

Kmax numeric; the maximum to set; default is the minimum of either (7/5 max value),
or (1/2 series length)

Details

The method by which constrain_tapers refines tapers is set with the constraint.method argu-
ment:

• 'simple.slope' use ctap_simple

• 'loess.smooth' uses ctap_loess

• 'none' returns unbounded tapers.

minspan bounds the number of tapers to within the minimum of either the maximum number of
tapers found in the object, or the half-length of the series, which is necessary because it would be
nonsense to have more tapers than the length of the series.
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Details of the constraint methods:

via first differencing (the default):
ctap_simple is the preferred constraint method. The algorithm uses first-differencing to modify
the number of tapers in the previous position. Effectively, the constraint is based on a causal, 1st-
order Finite Impulse-response Filter (FIR) which makes the method sensitive to rapid changes in
the number of tapers; naturally, smoother spectra tend to produce less fluctuation in taper numbers,
which makes this well suited for adaptive processing.
This produces, generally, the most stable results, meaning repeatedly running the constraint will
not change values other than on the first execution; the same cannot be said for the other methods,
which are also considerably more expensive to use.

via LOESS smoothing:
ctap_loess uses loess to smooth the taper vector; is can be very slow thanks to quadratic scal-
ing.

Value

constrain_tapers: an object with class 'tapers'; minspan: a vector

Warning

ctap_loess results tend to be strongly dependent on the tuning parameters given to loess (for
obvious reasons); hence, some effort should be given to understand their effect, and/or re-tuning
them if needed.

Author(s)

A.J. Barbour and R.L. Parker

See Also

riedsid, ctap_simple, ctap_loess, tapers

Examples

## Not run: #REX
library(psd)

##
## Taper constraint procedures
##

data(magnet)
X <- magnet$clean

##
## spectrum
PSD <- psdcore(X, ntaper=10, refresh=TRUE)
## optimize tapers
kopt <- riedsid(PSD)
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kopt.loess <- riedsid(PSD, c.method="loess.smooth")
# the preferred function:
kopt2 <- riedsid2(PSD)
#
plot(as.tapers(kopt2), ylim =c(0, 60))
lines(as.tapers(kopt.loess), col='black')
lines(as.tapers(kopt), col='black', lwd=2)

##
## To compare all the methods at once:
demo("ctap")

## End(Not run)#REX

tapers-methods Generic methods for objects with class ’tapers’

Description

Generic methods for objects with class 'tapers'

Usage

## S3 method for class 'tapers'
as.data.frame(x, ...)

data.frame.tapers(x, ...)

## S3 method for class 'tapers'
print(x, ...)

## S3 method for class 'tapers'
summary(object, ...)

## S3 method for class 'summary.tapers'
print(x, ...)

## S3 method for class 'tapers'
lines(x, lwd = 1.8, col = "red", ...)

## S3 method for class 'tapers'
points(x, pch = "_", cex = 1, ...)

## S3 method for class 'tapers'
plot(
x,
xi = NULL,
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color.pal = c("Blues", "Spectral"),
ylim = NULL,
hv.lines = FALSE,
log.y = FALSE,
xlab = "taper index",
ylab = "number of tapers",
...

)

Arguments

x tapers object
... optional arguments
object tapers object
lwd line width (default is 1.8)
col color of line (default is "red")
pch point character (default is "_")
cex point size (default is 1)
xi optional vector for indices of x
color.pal color palette to use (choices are: "Blues","Spectral")
ylim optional limits for y-axis
hv.lines logical; should horizontal (log2) and vertical reference lines be plotted?
log.y logical; should the vertical scale be logarithmic?
xlab, ylab character; labels for plot axes

Value

plot returns a list with names: line.colors (hex values)

Author(s)

A.J. Barbour

See Also

as.tapers, constrain_tapers

Examples

##
tap <- as.tapers(c(1:49,50:0)+rnorm(1e2))
print(tap)
print(summary(tap))
plot(tap)
# no arithmetic methods
tap <- as.tapers(tap/2)
lines(tap)
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tapers-refinement Taper constraints using simple derivatives

Description

Taper constraints using simple derivatives

Usage

ctap_simple(tapvec, ...)

## S3 method for class 'tapers'
ctap_simple(tapvec, ...)

## Default S3 method:
ctap_simple(tapvec, maxslope = 1L, ...)

Arguments

tapvec integer or 'tapers' object; the number of tapers at each frequency

... optional arguments

maxslope integer; constrain based on this maximum first difference

Author(s)

A.J. Barbour

See Also

constrain_tapers, ctap_loess

Examples

# generate some random taper series and constrain them based on slopes
set.seed(1237)
n <- 11
x <- seq_len(n)
xn <- round(runif(n,1,n))

xnf <- ctap_simple(xn, 0) # flattens out
xnc <- ctap_simple(xn, 1) # no change, already only slopes = 1
try(all.equal(xnc, xn))
xnc2 <- ctap_simple(xn, 2) # slopes = 2 only

plot(xn, type='b', pch=16, ylim=c(0,12))
grid()
abline(a=0,b=1, col='red', lty=3); abline(a=0,b=2, col='blue', lty=3)
lines(xnf, type='b', col='green')
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lines(xnc, type='b', col='red')
lines(xnc2, type='b', col='blue')
lines(0.2+as.vector(psd::ctap_simple(psd::as.tapers(xn))), type='b', pch=".", col='salmon')

# more examples:

Tohoku Observations of teleseismic strains from the 2011 Tohoku earthquake.

Description

The Mw9 Tohoku earthquake happened on March 11, 2011. The seismic waves were recorded
at stations across the globe, including by borehole strainmeters in the Network of the Americas
(NOTA), which was previously known as the Plate Boundary Observatory (PBO) network.

Format

A dataframe with 16000 observations on the following 15 variables.

Dts The original datetime string, in UTC.

areal Areal strains

areal.tide Tidal correction to the areal strains.

areal.baro Barometric correction to the areal strains.

gamma1 Engineering differential extensional strain: γ1

gamma1.tide Tidal correction for the γ1 strains.

gamma1.baro Barometric pressure correction to the γ1 strains.

gamma2 Engineering shear strain: γ2.

gamma2.tide Tidal correction for the γ2 strains.

gamma2.baro Barometric pressure correction to the γ2 strains.

pressure.atm Atmospheric pressure.

pressure.pore Pore-fluid pressure.

Dt The Dts information converted to POSIX datetime.

Origin.secs The number of seconds relative to the earthquake-origin time.

epoch Classification based on predicted P-wave arrival: preseismic or seismic.

and 2 attributes:

units A list of strings regarding the units of various physical quantities given here.

iasp A list of source and station characteristics, including the the origin time, predicted traveltimes
for P and S waves, and the geodetic information used in the traveltime calculation.
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Details

These data are for station B084, which is located approximately 8500 km away from the epicenter.
Because this distance is large, the seismic waves didn’t arrive at this station for more than 700
seconds after the origin time. So there is a record of pre-seismic noise included, the timeseries
extends 6784 seconds prior to the origin time, and 9215 seconds after.

The data are classified with the "epoch" variable, which separates the series into pre-seismic and
seismic data; this is defined relative to the predicted P-wave arrival time from a traveltime model.

The original dataset contained NA values, which were imputed using zoo::na.locf, which fills NA
with the last previous observation.

Source

High frequency strain data archive:

http://borehole.unavco.org/bsm/earthquakes/NeartheEastCoastofHonshuJapan_20110311/

References

USGS summary page:

https://earthquake.usgs.gov/earthquakes/eventpage/official20110311054624120_30/executive

See Also

pspectrum, hfsnm, magnet

TauP.R for an R-implementation of the traveltime calculations

Examples

data(Tohoku)
str(Tohoku)

wipp30 Water levels from borehole WIPP30

Description

Observed water levels and barometric pressure from well WIPP30 (WIPP: Waste Isolation Pilot
Plant)

Format

A matrix with 13413 rows following 4 variables.

time Time (hours)

wl Water levels (psi)

baro Barometric pressure (psi)

et Earth tide gravity potential (nanometers/second^2)

http://borehole.unavco.org/bsm/earthquakes/NeartheEastCoastofHonshuJapan_20110311/
https://earthquake.usgs.gov/earthquakes/eventpage/official20110311054624120_30/executive
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Details

This is the dataset used in the multivariate PSD vignette

Source

BETCO page: http://www.hydrology.uga.edu/rasmussen/betco/

References

Toll, N.J., Rasmussen, T.C., (2007), Removal of Barometric Pressure Effects and Earth Tides from
Observed Water Levels. Ground Water, 45, 101–105, doi: 10.1111/j.1745-6584.2006.00254.x

See Also

pspectrum

Examples

data(wipp30)
summary(wipp30)

http://www.hydrology.uga.edu/rasmussen/betco/
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frequency, 32

get_adapt_history, 22
get_adapt_history (psd-environment), 20
get_psd_env_name (psd-environment), 20

get_psd_env_pointer (psd-environment),
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is.amt (psd-utilities), 25
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is.spec (psd-utilities), 25
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is.tapers (psd-utilities), 25

last_psd (psd-environment), 20
lines.spec (spec-methods), 40
lines.tapers (tapers-methods), 50
loess, 49
log10, 14

magnet, 8, 9, 54
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mod, 26–28
mod (psd-utilities), 25
modulo_floor, 10, 28

na_locf, 25
na_locf (psd-utilities), 25
na_mat, 26
na_mat (psd-utilities), 25
new_adapt_history (psd-environment), 20
nextn, 10
normalization (psd-normalization), 23
normalize (psd-normalization), 23

ones, 26
ones (psd-utilities), 25

parabolic_weights, 31, 35
parabolic_weights
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parabolic_weights_rcpp, 11, 11, 35
pgram_compare, 13, 30, 31
phase, 14
pilot_spec, 15, 32, 33
pilot_spectrum (pilot_spec), 15
plot.tapers (tapers-methods), 50
points.tapers (tapers-methods), 50
polygon, 25, 27
prewhiten, 16, 17, 33
print.summary.tapers (tapers-methods),
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print.tapers (tapers-methods), 50
psd (psd-package), 3
psd-environment, 20
psd-normalization, 23
psd-package, 3
psd-utilities, 25
psd_envAssign (psd-environment), 20
psd_envAssignGet (psd-environment), 20
psd_envClear (psd-environment), 20
psd_envGet (psd-environment), 20
psd_envList (psd-environment), 20
psd_envRefresh (psd-environment), 20
psd_envStatus (psd-environment), 20
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pspectrum, 3, 4, 8, 9, 19, 21, 22, 29, 31, 31,

33, 38, 54, 55
pspectrum_basic, 33
pspectrum_basic (pspectrum), 31

rcpp_ctap_simple, 34
resample_fft_rcpp, 11, 12, 34, 38
resample_mvfft, 35
riedsid, 4, 31, 35, 36, 36, 49
riedsid2, 12, 32, 33, 37
riedsid2 (riedsid), 36
riedsid_rcpp, 39
rowvec, 25
rowvec (psd-utilities), 25

smooth.spline, 37, 46, 47
spec-methods, 40
spec.ar, 16
spec.pgram, 13
spec.pilot (pilot_spec), 15
spec.psd (psd-package), 3

spec_confint, 42, 44
spec_details (spec-methods), 40
spectral_properties, 3, 24, 41, 45
spectrum, 25, 30
splineGrad, 37, 46
summary.tapers (tapers-methods), 50

tapers, 30, 49
tapers (as.tapers), 4
tapers-constraints, 47
tapers-methods, 50
tapers-refinement, 52
Tohoku, 8, 9, 53

update_adapt_history (psd-environment),
20

varddiff, 25
varddiff (psd-utilities), 25
vardiff, 25, 33
vardiff (psd-utilities), 25
vector_reshape, 25
vector_reshape (psd-utilities), 25

wipp30, 54

zeros, 26
zeros (psd-utilities), 25
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